Simplify clock estimation
The slope encodes the drift between the device clock and the computer clock. Its real value is expected very close to 1. To estimate it, just assume it is exactly 1. Since the clock is used to estimate very close points in the future, the error caused by clock drift is totally negligible, and in practice it is way lower than the slope estimation error. Therefore, only estimate the offset.
This commit is contained in:
@@ -3,13 +3,8 @@
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "util/tick.h"
|
||||
|
||||
#define SC_CLOCK_RANGE 32
|
||||
static_assert(!(SC_CLOCK_RANGE & 1), "SC_CLOCK_RANGE must be even");
|
||||
|
||||
struct sc_clock_point {
|
||||
sc_tick system;
|
||||
sc_tick stream;
|
||||
@@ -21,40 +16,18 @@ struct sc_clock_point {
|
||||
*
|
||||
* f(stream) = slope * stream + offset
|
||||
*
|
||||
* To that end, it stores the SC_CLOCK_RANGE last clock points (the timestamps
|
||||
* of a frame expressed both in stream time and system time) in a circular
|
||||
* array.
|
||||
* Theoretically, the slope encodes the drift between the device clock and the
|
||||
* computer clock. It is expected to be very close to 1.
|
||||
*
|
||||
* To estimate the slope, it splits the last SC_CLOCK_RANGE points into two
|
||||
* sets of SC_CLOCK_RANGE/2 points, and computes their centroid ("average
|
||||
* point"). The slope of the estimated affine function is that of the line
|
||||
* passing through these two points.
|
||||
* Since the clock is used to estimate very close points in the future (which
|
||||
* are reestimated on every clock update, see delay_buffer), the error caused
|
||||
* by clock drift is totally negligible, so it is better to assume that the
|
||||
* slope is 1 than to estimate it (the estimation error would be larger).
|
||||
*
|
||||
* To estimate the offset, it computes the centroid of all the SC_CLOCK_RANGE
|
||||
* points. The resulting affine function passes by this centroid.
|
||||
*
|
||||
* With a circular array, the rolling sums (and average) are quick to compute.
|
||||
* In practice, the estimation is stable and the evolution is smooth.
|
||||
* Therefore, only the offset is estimated.
|
||||
*/
|
||||
struct sc_clock {
|
||||
// Circular array
|
||||
struct sc_clock_point points[SC_CLOCK_RANGE];
|
||||
|
||||
// Number of points in the array (count <= SC_CLOCK_RANGE)
|
||||
unsigned count;
|
||||
|
||||
// Index of the next point to write
|
||||
unsigned head;
|
||||
|
||||
// Sum of the first count/2 points
|
||||
struct sc_clock_point left_sum;
|
||||
|
||||
// Sum of the last (count+1)/2 points
|
||||
struct sc_clock_point right_sum;
|
||||
|
||||
// Estimated slope and offset
|
||||
// (computed on sc_clock_update(), used by sc_clock_to_system_time())
|
||||
double slope;
|
||||
unsigned range;
|
||||
sc_tick offset;
|
||||
};
|
||||
|
||||
|
||||
Reference in New Issue
Block a user